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Abslract-A direct method based on the boundary element eljuation approach was proposed in a
previous paper (Li and Keer. 1992. flit. 1. Solids Structures 29. 2735-27-l7) to solve tensile crack
growth problems for arbitrarily distributed loads. This methl,d is e~tended to solve crack growth
problems under an arbitrary shear loading. An equation is derived which gives an e~plicit relation
between the crack front variation and the resulting changes in the energy release rate. This method
is then applied to determine the yield zone (,f cracks having an assumed shear resistance of the
Dugdale type. Numerical results show a signiticant Poisson's ratio etfc'Ct of the material on the
shape of the yield zone. Averaged quantities appear quantitatively similar to results from simpler
appro~imalions.

INTRODUCTION

Three-dimensional crack growth problems an: of practical interest in many engineering
fields. such as hydraulic induced fracturing used in the oil industry and the an,l1ysis of
damage mechanisms of structural components uue to crack expansion. [n contrast to
stationary crack problems in which the geometry of the crack is given. the present analysis
considers crack growth problems where the crack shape is not known a priori and must
therefore be determined through the solution proccdun.:. The procedures require that the
fracture criterion be satisfied after growth for e,lch new crack geometry.

An iteration appro,lch has been used previously to uddress this class of problems. At
each step the crack front advance at a point is assumed to be proportional to the difference
of the stress intensity factor and the local fracture toughness of the material to a certain
power. The iteration continues until an equilibrium crack front is found. One drawback of
this approach is that the iteration process may not represent the actual crack growth process
[see e.g. papers by Mastrojannis el 01. (1980), Lee and Keer (1986) and Fares (1989)].

For cracks in a uniformly loaded. homogeneous medium, Rice (1985, 1987) and Gao
and Rice ([ 986, (987) have developed a theory for calculating the first order variation in
crack face displacement and stress intensity factor due to small changes in crack geometry.
The problem of finding an equilibrium crack front for the shear mode with a constant
energy release rate along the front, where the crack is perturbed slightly from a circular
shape, was addressed by this theory (Gao. (988). The first order relation between the
perturbation of the crack geometry and the stress inll.:nsity t;lctor was utilized and extended
to solve crack growth problems involving large crack shape deformations by Bower and
Ortiz ([990).

To solve general crack growth problems without adopting an ad Iroc crack growth law,
such as is used in the iteration approach mentioned above, it is necessary to develop
equations which provide an explicit relation between the crack front variation and the
resulting changes in the stress intensity factor. It then becomes possible to determine the
crack front advance which will result in a given variation of the stress intensity factor such
that the fracture criterion is satisfied at each new crack front.

An approach was proposed by Li and Keer ([ 992) to derive such equations from
appropriate boundary element equations, which were originally developed to solve for the
crack face displacement and the stress intensity factor for stationary crack problems. It is
apparent that the coefficients, as well as the solution of the boundary element equations.
depend upon the shape of the crack. By considering the changes of these quantities with
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respect to the positions of the points on the crack front. a perturbation type n:latlon can
be derived between the crack front displacement and the variation of the stress intenslt:

factor. By this approach. the equations necessary to solve mode I crack growth problems
are established and used. as an application. to analyse the growth of the yidd lOne of a

Dugdale-type crack of circular shape under linear variation of load as well as of o:lliptical
shapes under uniform load (Li and KeeL 19<.)2\.

An equation of the perturbation type. which givo:s an explicit ro:L\tion bet\\t:en the

crack front displacement and the resulting variation of the energy release rate related t,)

the fracture criteril)n for shear mode crack,. is deri\ed for solving the shear Ilwde crack
growth problems considered here. The approach is similar to that used for mode I cral'k

problems. although the resulting formulae are inherently more complicated.
The equation derived is then used for the problem of determining the :Idd zone of

penny-shaped cracks. using a Dugdale-type thel)ry fl)r shear loading. Such a theory might
be applied when the crack is constrained to remain in a plane. such as \\hen two identical

shear-loaded half spaces are joined t\.)gethcr by a weak bond having a penny-shaped
unbol1lkd region. Unlike the case of tensik cracks. for which analytical solutions arc

availabk for penny-shaped cracks [sec. e.g. Keel' and \Iura (1965) and T~lda ('I uf. (19K5)].
the clse of three-dimensional shear mode cracks have recei ved compar~ltlvcly Ii ttk a tten tion
Under the assumption that the shape of the front of the yield lone is still circular. Bedel'
and Grllss (11)X,» ha\e studied this problem analytk'~dly, Their results indicate tint tillS
assumptilln is valid Pllly when the Pllisslln's ratill of the m~lterial is much sl11~dlcr tlun unit:

or whcn the r~ldius PI' the cr~lck f<tl'e is vcry small Cllll1l)~lred to tklt llf the yil'ld Illne. Sincc
the prllbkm is nllW aSyl111l1etrical. the resulting yldd Illl1e ul1der uniform rel1lllte sIH':~lr

loading will il1evit<thly dcvi;lte frol11 a cirl·!c. which n:nders analysis ddlicult ~ll1d rcquires

the use llf a nUl11ericd l11ethod. such as that proposed here,
Anothl'r dilliculty associ;lled with the she;lr mode LT;lck IS tklt the direction llf the yield

stress in the yidd lonc is ~t1so not known u {,riori. 111 this p~lper the m~lgnitude PI' the yield

stress is taken to he eonst;ll1t throughout the plastic Illne whilc its directilln is ~lssul11ed to
be opposite to the direction PI' the LT~lck Ltce sliding dlsplacemcnt and varies frllll1 point to

point. Since the direction llf the yield stress ~Ind the LT~lck Lice displ<tcement ~Ire l11utu<tlly
dependel1t. the prohkm ~dso requires their resolution ~IS p<trt of the solutilln, It is sho\\n

th<tt the direetion of the yield stress e<tn he determined hy ;In iter<ttion scheme <ts diseussed

later.

Consider a plan<tr crack in the plane x, = 0 in a full space. subjected to <t shear load
\vhich induces mode II <tnd Ilwde III stress intensity factors aroul1d the crack front. With

the crack face sliding displ<tcements t.u ' and t.u' along the ,\, and .\, directions as the
unknown functions. a system of two-dimensional singular integral equ;ltions. dctined on
the crack Llces. has heen derived by Lee ellil. (19g7 I. which can be written in the I'orm:

JI\'ii(\.XlJ)t.ui(X)d .. f(\1 = -:'(x,,), 7../1= 1.2. ( 1)

wh~re r' is the shear stress along the x, direction anJ I\"I(X . .\'11) is the k~rncll'unctiongiv~n

as

(3)
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(4)

where r = '" (x,,-x)c+U"j-y)C and 1\ = }-..h. where vis Poisson's ratio.
For a numerical solution of eqn (I) the domain of the crack face is divided into N

subdomains. Afta putting eqn (I) into a discrete form by a proper numerical scheme (Lee
e( al,. 19~7). it is reduced to the following set of algebraic equations:

H;;'J.IIj! = -r,'. :x.fJ= 1.2. i.j= 1.2......V.

where r,' is the shear stress in the x, direction at the collocation point x,:

(5)

Here. j., is the jth subdomain (element) of the crack faces and II'(X) is the weight function
which describes the variation of ~/I within each element:

~/I(x) = ~IIII'(.\'). (6)

In this papl:r thl: wl:ight fUIKtion II'(X) = ,2(//: -I:: is adoptl:d whl:re I: is thl: shortl:st
distanl:l: frolll thl: intl:gration point to thl: crack front and a is a representative kngth of thl:
cr~l\.:k gl:ollll:try (Murakami and :--kmat-Nasser. IlJXJ).

Al'tl:r solving ~II from l:qn (5) thl: strl:SS intensity factor ". is cakulakd from thl: l:rack
sliding displacl:llll:nt of thl: crack front dl:ml:nts by thl: rdation:

h h".:,. _ ,I _Ttll ,I _1/1.-1., \
n (t\lrcosO+~/I sinO).

II - 4(1-1') I
\ill:

In turn. the energy rdease ratel:an bl: derived fro III the stress intensity factor as

(7)

(X)

('.> )

In this paper the fracture niterion adopted for the shear mode crack growth is an
inequality boundary condition. stating that the energy rdease rate has to be less than or
equal to a critical value (ie. (i ~ (ie' where (Ie is a constant which reflects the property of
the material to resist fracture.

With a continuous increase in the applied load. the valLH: of the energy release rate will
eventually reach G, at some points along the nack front. The crack will be fon.;ed to grow
by any further increment in the load. With the boundary dement equation approach the
cral:k front is defined by the positions of nodal points along the crack front. Consequently.
for crack growth problems. the variation of the crack geometry during crack growth is
specified hy the displacements of the nodes on the crack front. In the seljud ()a, will be used
to denote the displacement of the jth front node along the direction normal to the crack
front. The new crack front after growth is determined by the criterion that the solution of
G from ellns (5). (7). (X) and ('.» for the new crack front satisfies G ~ G,. In order to find
such a crack geometry. the rdation hetween the crack front node displacement and the
resulting changes of the solution of eqn (5) has to he established. The coefficients in eqn
(5) as well as the solution iill apparently depend upon the shape of the crack. or the positions
of the nodal points on the crack front. To study the variation in iill and hence the energy
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release rate caused by the crack front variation. or 6u. the change of the values of l\ uantIties
given in eqn (5) with respect to 6(1 is taken as

-'" . l./i =' I. 2. I =' 1.2..... Y ( 10\

[n the abO\e el\uation the summation is given by j =' I ..... Sand 11/ =' I ..... J!. where Jf
is the total number of the frontal nodes. The calculation of (cH:;' t\)(/", is SImilar to that
discussed in the previous paper for ('H" /\)u'" (Li and Keel'. 1992). The formulae for regular
integrals and for Cauchy principal value integrals can be obtained from the corresponding
formulae for (cH'I (\)il", by simply substituting H" with H,';I. which are not listed here. Fllr

the finite part integral. the formulae are given in the aprendi\.
The relation between the changes of Mi and G is deri ved from eq ns (7). (X) and (If) as

. ,,/ 2rc {\.
()G = -4 .... 2111: -I::. '. .' . 1 .' •

[()( ~lI" ) ( K I1 COS 0 - Kill Sill 0) + ,) (~11 ) ( K II Sin 0 + Kill cos 0)]
I:

The equation which gives a direct rdation between the crack front advance and the
resulting changes in the energy release rate G can he derived from eqns (5) and (II) by
performing matrix manipulation tC) diminate those ()(L\/i) of the Illside elements:

( 12\

In deriving eqn (12). ,jr is taken to be zero in eqn (5). lienee M; in the above equation IS

produced solely by tilt: crack advance. The variation of energy n.:least: rate caused by tilt:
variation of the load is solvt:d from eqn (5) by letting ,;(/ =' O.

Equation (12) is solved by incorporating the fracture criterion G :S (;, as an int:qualily
boundary condition on thc unknowns as follows:

For crack front clemcnts:

(iC = O. ()(/ i= 0 if C; =' C;,.

,iCi=O. (){/='O ifC<C" ( IJ)

APPLICATION: AN ..\LYSIS OF SII EA R MODE CRACKS WITH PLASTIC ZO:-': E

For pcnny-shapcd cracks under uniform tcnsion applicd pc:rpcndicularly to thc planc
of thc crack. the determination of the yidd zone is relatively easy. assuming that yield takcs
place in the plane of the crack. Since the shape of the yield zone front remains circular. an
analytical approach can be employed. Under uniform remote loading conditions thc result­
ing equation, giving the relation of the yield zone size :ll1d tensile load level. has the form

(Tada ef al.. 1985)

r ,

~-JI-(r
h - O'~ ..

( 14)

where a and h are the radius of the crack face and the yield zone front respectively. 0' is the

uniform tensile stress and O'y is the yield stress.
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Fig. I. P.:nny-shap.:d Dugdak crack und.:r sh.:ar loading.

For a penny-shaped crack under uniform she.tr loading (Fig. I) the shape of the yield
zone front is. in general. not a circle as the load condition is now asymmetric. Becker and
Gross (1989) ha ve shown that only under the condition

,
wr
2h1 « I and

va~
----,« I
2(I-v)h-

( 15)

may the yield zone be approximated by a circular yield zone front. Under such conditions
they also show that an equation similar to eqn (14) holds for shear mode cracks. It is
observed that the conditions in eqn (15) are satisfied only when the Poisson's ratio, ~' « I
or when the yield zone is much larger than the crack dimension, which is not the case for
most applications.

In the sequel the method described in the preceding section is used to investigate the
shape and size of the yield zone of penny-shaped cracks under uniform shear loading. The
geometry and the loading are as shown in Fig. I. The radius. a. of the penny-shaped crack
is taken to be unity and the direction of the uniform remote shear load! is along the .'(­
axis. The load in the yield zone a < r < R(O) is the sum of the remote shear load! and the
yield shear stress with constant magnitude !y. The direction of the yield stress is taken in
the opposite direction of the crack face sliding displacement. whose direction varies from
point to point and in general deviates from the direction of the applied shear r when
Poisson's ratio is not zero. To solve this problem. which is highly nonlinear, an iterative
scheme described below is used.

Let the direction vector of the crack face sliding displacement and the yield stress in
the ith iteration step be (n~l, n~l1) and (r~), r:rl), respectively. At the beginning of the iteration
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the dirt:l.:tion of the yield stress is assumed to be opposite to the direction of the shear
loading: (,','11, ':"') = (- l. 0). The crack face displacement is solved from eljn (5) and its
direction (11\'1', n'''') at each point is calculated. The direction of the yield stn:ss of the ith
step is calculated from the results of the previous step b;.

_Iii r Ii - i.ln:" + ~, ').
"

_III I - (,:"): , ( 16)" \,

where i. < I is a multiplier. The corresponding (II\", II:") are obtained hy sohlng
eqn (5). The ikration continm:s until the avaage value of the inner product
,z"" rid = n';'rl;'+n':'r'.d in the yield zone is in the range of (-0.9999. - 1.0). [n the present
calculation the value of i. is taken to be 0.2 at the beginning of the itaation. which can he
adjusted during the iteration, depending on the speed of convergence.

Some previous investigations in order to simplify the analysis have assumed that the
direction of the yield stress is opposite to the direction of the applied shear stress (along
the x-axis in the contiguration shown in Fig. I). (Becker and Gross, 1989). [n our calculation
when Poisson's ratio is not zero it is ohserved that a given applied shear stress in the x­
direction will result in a crack face sliding displacement in the y-directioll. Thus, the
assumption that the yield stress is opposite to the direction of the applied shear will t~\il to
reproduce the correct crad growth since slip in a directions perpendicular to the applied
load is not correctly taken into account. The present calculation docs assume that the
direction of the yield stress corresponds to the slip direction. Although the ernlr 1'01';\ single
calculation may not he too large, the ;\ccullllliated error may he large whell growth is
considered.

The criterion used here to deterlllille the yield lone front is that (i, the energy rele;lsc
rate, slwuld he equal to lero at the yield lone front and is equivalent to requiring th;\t the
stress singularity vanish. hll' a given remote shear load, the pel'lurhation starl~ from ;\11

initial circular yir.:1d lOne front R(O) =' C. l:quatioCl (5) is solvcd and a valuc of (i I- 0, is
calculated that v;lries ;t1Dng the front with the maximum and minimum values at ()= () and
() = 77:i 2 n:spectively. Equation (12) is used to determine the cr;lek front dispL\cement ,ia,
which will n:duce the energy release rate along the front. The change of eIH:rg: release rate
,iG in eqn (12) is specified as-- 'J.(/,. To ensure accuracy the value of 'J. is chosen such that
the maximum node displacement is less than o.n I. and the analysis is repeated for lhe
perturbed new front. The perturhation continues until (i along the yielding lOne front is
approximately lerD, cDnsidering the errlH" associated with the solution Df the original
houndary element eqn (5). In tht: prest:nt computation G < O.O(J02 is considelul to bc
sulliciently small to bt: t;lken as It:rn. At this stage the actual yidd IOnt: frnnt IS cllilsidert:d

to have been found.
The computation is carrit:d out for two ditfcrent values of Poisson's ratio: \' = 0.2 and

v = 0.4 and for various sht:ar IDad kvds. The numerical rt:sults an.: presented in Figs 2 X.
In Figs 2 and 3. where becaust: 01' the symmetry of the problem only the upper half of the
crack geometry is shown. the thicker solid line represents the penny-shaped crack fronl
while the other curves give the yield lone fronts corresponding to various shear loading

kvels ranging from 0.25" to O.X5" with increment 0.1".
Figures 4 and 5 give a c1ost:r look at the variation of the width of the yield lOne along

the crack front. The eight curves from lowest to the uppermost in each figure represent the
yidd zone widths corresponding to a shear load of increasing magnitudes from O.25r, to
0.95r .. with increment 0.1 r,. It is ckar from Figs 4 and 5 that tht: difference hetween the
widths of the yidd zone at IJ = 0 and IJ = 77:/2 increases with tht: increase in the shear loading

level.
To measure the deviation of the shape of the yield zone front from a circle. the size of

the yield zone must he taken into account. Here the quantity

" = (width avcr;\ge widthl/average width ( 17)

is used to measure the comparative deviation of the yield zone front from a circle. When

the yield zone front is a circle. " equals zero.
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2756 X. LI and L. M. KEER

Z.5

v = O.~
2.0

..
~

""

r
c L5..

>- t/ty=0.25 - ()l)5
~

.= 10 increment: () 1

.."

~

OJ

()

Fig 5. Variall\ln of thc width (If yielding !pnc along thc' CLICk front

The results arc shown in Figs 6 and 7. It is noted that in the load range from 0.25r~ to
0.65r, the corresponding curves arc nearly indistinguishahle from each other. which implies
that in this range of load level thl: yield IOnl: grows while its shape n:mains almost
unchanged. It is nokd that thl: deviation of thl: shape of the yield IOnl: front from a l:ircle
hegins to deen:ase only after the magnitlilk of the shl:ar load readles a comparativdy high
kvel.

Equation (15) (Beckl:r and Gross, 1<JXl)) implies that when h. the radius of the yidd
lOne front, is much brger than a, a circular yield front meets the vanishing strl:SS singularity
criterion. The results here (Figs 6 and 7) show that when the yield /One grows. it will
gradually approach a circle only in thl: sense of eqn (17), The ahsolute difference hetwl:en
the width at a point and the average width may actually increase as can be seen from Figs
4 and 5.
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Fig. 6. DeviatIon of yidding zone front from a circle.
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Fig. 7. Deviation of yielding wne front from a circle.

The value of the Poisson's ratio of a materi.tl has a profound effect on the ShilPC of
the yield zone as can be seen by comparing Figs 4 and 5. as well as Figs 6 and 7. It is
observed that when v is im;reased from 0.2 to 0.4. the maximum dcviution of the yield zone
width from the average value is nearly doubled.

Becker and Gross (19l)9) have shown that for cracks using a Dugdale-type approxi­
mation under uniform shear loading. for the conditions of eqn (15) the yidding zone
front eilll be approximated by a circle and the following equation. similar to cqn (14),
holds:

( 18)

The numerical results here (Fig. 8) indicate that eqn (18) gives a good estimation of the
average width of the yield zone for difl"cn:nt values of Poisson's ratio, although the pointwise
estimate is not accurate.

4

Eqn (18)

3 0 v =0.2

oS • v =0.43
~.....

2•....
;0

<

0.60.40.2
o4--...,..A::;~:;::::""'--,---"---,r--...--~

0.0 0.8 1.0

-city

Fig. X. V,lriation of average width vs load level.
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·Ltda. II .. l"IITi,. I' C. and IrWin. (i. R. t I'IX»). lilr SIr..,.' .·I"o/rIi.'· or C"II<'~I IIl1",II"",~ (21ld edn). I'aris
PnHllII.:riull. s[ l.~Hli:'\.

AI'I'FNDIX

In thc appcndi", formulac arc given to eakulate the ,krivativcs of the finite part integral with respect to thc
pllSitions of thl: collocation point ;II1U the nodal points. By inspccting ellns (2) (.t). it appears that the linite p'lrt
intcgral ,an be ,akulated as the sum Ill' two integrals.

and

I, = F.P.J~,d..l (A I)

(A2)

whcre Ihe integration is I'vcr the triangular dClllent uf nodc .1'" x: and .\ I with a ,ollo.:alion point at x,,;
.i', = .1'" - x,i', = .1'" - r. In ordcr 10 derive a dosed form e.\prcssion of the Hnite integral. a lo,al ('f. ~) ,oordinatc
with the origin at I" and thc "a\is paralld to x ,I, is ,hosen. The 10GII el'ordinate (If,. ~,) of the ith node is rdated
to thc' gr.,hal coordinalc II.. .1',1 through

Y: -,"1

.\":-.\'1

where

Lin and Keel' (19X71 have shnwn thaI

'f, = (I, -I,,)COSO+(y, -r"lsinO,

~,= --(I,-x"lsinO+(l',-r,,)cosO,

sin/l =
v(x, -I,)' +( .1', -.1',)'

etlS(! =
,,' (I, -.1',)' +( \', -.1',)'

(A3)

(AS)

(A6)



where

and

Solution of crack growth problems-II

1 ('II 'I') ( 'I, 'I')
I, = "0' p; - p; - P"',,, - P"',,, .

iI=sin'O. h= -2cosOsinO. ('=cos'O. forI".

(/=cos'O, h=2cosOsinO. c=sin'O, forI".

II = -cosOsOlIl, h = cos'O-sin'I/, c = -il. fllr I" and I",

2759

(A7)

(A8)

(A9)

(AIO)

It is apparent that the calculation of thc derivatives of I" is straightforward if the derivativcs of I" I. and I,
are given, The derivatives of I with respect to x". x" x, ,Old x, have the form:

(n the above elluations

,'I

• (" I 1\, r'f I"")
L.. ,",:;- l~\·'- + ,,~,-~ ~, -\, .

j_ I ~I·' i· I

(All)

(AI2)

arc calculated from (A3) (Ao),

{'~, {'~i (':'11

t'\',' l')'i' t'X,

an: given in our previous paper (Li and Keer, 19(2) whcn:as the rest of the ncccssary formulae arc prcsentcl!
below:

(AI3)

(AI4)

(A15)

,,;
III'~(:~ . (A16)

SAS 29:22-F

(A17)

(A18)

(AI9)

(A20)
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