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Abstract—A direct method based on the boundary element equation approach was proposed in a
previous paper (Li and Keer, 1992, /ne. J. Solids Structures 29, 2735-2747) to solve tensile crack
growth problems for arbitrarily distributed loads. This method is extended to solve crack growth
problems under an arbitrary shear loading. An equation is derived which gives an explicit relation
between the crack froat variation and the resulting changes in the energy release rate. This method
is then applied to determine the yield zone of cracks having an assumed shear resistance of the
Dugdale type. Numerical results show a significant Poisson’s ratio effect of the material on the
shape of the yield zone. Averaged quantitics appear quantitatively similar to results from simpler
approximations.

INTRODUCTION

Three-dimensional crack growth problems arc of practical interest in many engineering
ficlds, such as hydraulic induced fracturing used in the oil industry and the analysis of
damage mechanisms of structural components due to crack expansion. In contrast to
stationary crack problems in which the geometry of the crack is given, the present analysis
considers crack growth problems where the crack shape is not known a priori and must
thercfore be determined through the solution procedure. The procedures require that the
fracture criterion be satisfied after growth for cach new crack geometry.

An iteration approach has been used previously to address this class of problems. At
cach step the crack front advance at a point is assumed to be proportional to the difference
of the stress intensity factor and the local fracture toughness of the material to a certain
power. The iteration continuces until an equilibrium crack front is found. One drawback of
this approach is that the iteration process may not represent the actual crack growth process
[see e.g. papers by Mastrojunnis ef al. (1980), Lee and Keer (1986) and Fares (1989)].

For cracks in a uniformly loaded, homogencous medium, Rice (1985, 1987) and Gao
and Rice (1986, 1987) have developed a theory for calculating the first order variation in
crack face displacement and stress intensity factor due to small changes in crack geometry.
The problem of finding an equilibrium crack front for the shear mode with a constant
energy release rate along the front, where the crack is perturbed slightly from a circular
shape, was addressed by this theory (Gao, 1988). The first order relation between the
perturbation of the crack geometry and the stress intensity factor was utilized and extended
to solve crack growth problems involving large crack shape deformations by Bower and
Ortiz (1990).

To solve general crack growth problems without adopting an ad hoc crack growth law,
such as is used in the iteration approach mentioned above, it is necessary to develop
equations which provide an explicit relation between the crack front variation and the
resulting changes in the stress intensity factor. It then becomes possible to determine the
crack front advance which will result in a given variation of the stress intensity factor such
that the fracture criterion is satisfied at each new crack front.

An approach was proposed by Li and Keer (1992) to derive such equations from
appropriate boundary element equations, which were originally developed to solve for the
crack face displacement and the stress intensity factor for stationary crack problems. It is
apparent that the coefficients, as well as the solution of the boundary element equations,
depend upon the shape of the crack. By considering the changes of these quantities with
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respect o the positions of the points on the crack front. a perturbation tvpe relation can
be derived between the cruck front displacement and the variation of the stress intensity
tactor. By this approach. the equuations necessury to solve mode [ crack growth problems
are established and used. as an application. to analvse the growth of the yield 7one of a
Dugdale-type crack of circular shape under linear vanaton of load as well as ot elliptical
shapes under uniform load (Li and Keer, 1992).

An equation of the perturbation tvpe. which gives an explicit relation between the
crack tront displacement and the resulting variation ot the energy release rate refated to
the fracture criterion for shear mode cracks, 15 derived for solving the shear mode crack
growth problems considered here. The approach s similar to that used tor mode T crack
problems. although the resulting formulue are inherently more complicated.

The equation derived is then used for the problem of determining the vield zone of
penny-shaped cracks. using a Dugdale-type theory for shear loading. Such a theory muight
be applied when the crack is constrained to remain in a plane. such as when two identical
shear-loaded halt spaces are joined together by a weak bond having o penny-shaped
unbonded region. Unlike the case of tensile cracks, tor which analvtical solutions are
available for penny-shaped cracks [sce. .o Keer and Mura (1965) and Tada e of. (1985,
the case of three-dimensional shear mode cracks have recetved comparatively little attention.
Under the assumption that the shape ot the front of the yield 7one s sull circular, Becker
and Gross (1989) have studied this problem analytically. Thetr results indicate that this
assumption is valid only when the Poisson™s ratio of the materiab s much smaller than unity
or when the radius of the erack face is very small compared to that of the yvield zone. Sinee
the problem is now asymmetrical, the resulting vield zone under uniform remote shear
loading will incvitably deviate from a circle. which renders analysis ditlicult and requires
the use of a numerical method, such as that proposed here.

Another difficulty associated with the shear mode crack s that the direction of the yield
stress in the vield zone is also not known a priori. In this paper the magnitude of the yicld
stress is taken to be constant throughout the plastic zone while its direction is assumed to
be opposite to the direction of the crack tuce sliding displacement and varies from point to
point. Since the direction ot the yield stress and the crack tace displacement are mutually
dependent, the problem also requires their resolution as part ot the solution. It is shown
that the direction of the yield stress can be determined by an iteration scheme as discussed
later,

FORMULATION

Consider a planar crack in the plane xv; = 0 in a tull space, subjected to a shear load
which induces mode 11 and mode HI stress intensity tactors around the crack front. With
the crack face sliding displacements Au' and Aw® along the v, and x, directions as the
unknown functions, a system of two-dimensional singular integrul equations, detined on
the crack faces, has been derived by Lee e . (1987), which can be written in the form:

-

KA, v A () dA(y) = =7y, 2 =12, (1

where £ s the sheur stress along the x, direction and A (x. vy) is the kernel function given

ds
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where r = / (.\'“—.\‘):-i-()'.,—'r): and n = 3-4v. where v is Poisson’s ratio.

For a numerical solution of eqn (1) the domain of the crack face 1s divided into ¥V
subdomains. After putting eqn (1) into a discrete form by a proper numerical scheme (Lee
et al.. 1987). it is reduced to the tollowing set of algebraic equations:

HYAG = -0 a. =12, ij=12..... V. (5)

where 7 is the shear stress in the x, direction at the collocation point x,:

HY = J K (. x)yw(x)dA).
3,

Here. A, is the jth subdomain (element) of the crack fuaces and w(x) is the weight function
which describes the variation of Au within each element

Au(x) = Adw(x). (6)

In this paper the weight function w(x) = 2ar—s i adopted where ¢ 1s the shortest
distance from the integration point to the crack front and « is a representative length of the
crack geometry (Murakami and Nemat-Nasser, 1983).

After solving A from cqgn (5) the stress intensity factor A is caleulated from the crack
sliding displacement of the crack front elements by the relation

/ M
\/2nu  2ae -

Ky = Au? cos O+ Au'sin ), 7
T \/;; (Au”cosO4+Au'sint) (7)
n ,/271:7« - . .
Ky = \/4 i “/ - (—Au?sin 0+ Au' cos 0). (8)
JE

In turn, the energy release rate can be derived from the stress intensity factor as
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In this paper the tracture criterion adopted for the shear mode crack growth is an
inequality boundary condition, stating that the energy release rate has to be less than or
equal to a critical value G, G € G.. where G is a constant which reflects the property of
the material to resist fracture.

With a continuous increase in the applied load, the value of the energy release rate will
eventually reach G, at some points along the crack front. The crack will be foreed to grow
by any further increment in the load. With the boundary clement equation approach the
crack tront is defined by the positions of nodal points along the crack front. Consequently,
for crack growth problems, the variation of the cruck geometry during cruck growth is
specified by the displacements of the nodes on the crack front. In the sequel da, will be used
to denote the displacement of the jth front node along the direction normal to the crack
front. The new crack front after growth is determined by the criterion that the solution of
G from eqns (3). (7). (8) and (9) tor the new crack front satisfics G < G... In order to find
such a crack geometry, the relation between the crack front node displacement and the
resulting chunges of the solution of eqn (35) has to be established. The coefficients in egqn
(5) as weil as the solution Ad apparently depend upon the shape of the crack. or the positions
of the nodal points on the crack front. To study the variation in Ad and hence the encrgy



2752 X. L1 and L. M. KEeEr

release rate caused by the crack front variation. or du. the change of the values of quantities
given in eqn (5) with respect to da is taken as

W SA S ‘1Hlxri‘ -1 : ; - ;
H7o(Ad )+ .~ Aalou, = =70 2 =12 i=12 ... V. (10)
cod,, '
In the above equation the summation is given by j = 1.... .. Vandmr = 1...... V[ where M

is the total number of the frontal nodes. The calculation of CH™' Cou,, is similur to that
discussed in the previous paper for ¢H, ¢da,, (Liand Keer, 1992). The formulae for regutar
integrals and for Cauchy principal value integrals can be obtained from the corresponding
formulae for ¢H, fda,, by simply substituting #,, with /7 which are not listed here. For
the finite part integral. the formulae are given in the appendix.

The relation between the changes of Ad and G 1s derived from eqns (7). (8) and (9) as
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The equation which gives a direct relation between the crack front advance and the
resulting changes i the energy release rate G can be derived from eqns (3) and (1) by
performing matrix manipulation to climinate those o(AQ) of the mside clements

A da, = 0G, i= 1.2, M. (12)

[n deriving eqn (12), ot is taken to be zero in eqn (5). Henee oG in the above equation s
produced solely by the crack advance. The variation of energy release rate caused by the
variation of the foad is solved from egn (5) by letting da = 0.

Equation (12) is solved by incorporating the fracture criterion G < G as an inequality
boundiry condition on the unknowns as tollows :

For crack front clements:

0G =0, du#0 MG =G,
G #0, du=0 G <G (13

APPLICATION: ANALYSIS OF SHEAR MODE CRACKS WITH PLASTIC ZONE

For penny-shaped cracks under uniform tension applied perpendicularly to the plane
of the crack, the determination of the yield zone is relatively casy, assuming that yield takes
place in the plane of the crack. Since the shape of the yield zone front remains circular, an
analytical approach can be employed. Under uniform remote loading conditions the result-
ing equation, giving the relation of the yicld zone size and tensile load level, has the form
(Tada er al., 1985)

o
« g~

= | — —, 1)
: \/ % (

where a and b are the radius of the crack face and the yield zone front respectively. o is the
uniform tensile stress and oy is the yield stress.
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Fig. 1. Penny-shaped Dugdale crack under shear loading.

For a penny-shaped crack under uniform shear loading (Fig. 1) the shape of the yield
zone front is, in general, not a circle as the load condition is now asymmetric. Becker and
Gross (1989) have shown that only under the condition

va’ va®
— and  ——— 5
TERN I and 0= )b « | (15)

may the yield zone be approximated by a circular yield zone front. Under such conditions
they also show that an equation similar to eqn (14) holds for shear mode cracks. It is
observed that the conditions in eqn (15) are satisfied only when the Poisson’s ratio, v « |
or when the yield zone is much larger than the crack dimension, which is not the case for
most applications.

In the sequel the method described in the preceding section is used to investigate the
shupe and size of the yield zone of penny-shaped cracks under uniform shear loading. The
geometry and the loading are as shown in Fig. 1. The radius, a, of the penny-shaped crack
is taken to be unity and the direction of the uniform remote shear load t is along the x-
axis. The load in the yield zone ¢ < r < R(0) is the sum of the remote shear load t and the
yicld shear stress with constant magnitude 1. The direction of the yield stress is taken in
the opposite direction of the crack face sliding displacement, whose direction varies from
point to point and in general deviates from the direction of the applied shear t when
Poisson’s ratio is not zero. To solve this problem, which is highly nonlinear, an iterative
scheme described below is used.

Let the direction vector of the crack face sliding displacement and the yield stress in
the ith iteration step be (7, n!”) and (¢¥”, ¢{), respectively. At the beginning of the iteration
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the direction of the yield stress is assumed to be opposite to the direction of the sheur
loading: (r{”. ") = (= 1. 0). The crack face displacement is solved from eqn (5) and its
direction (n\”. n'") at each point is calculated. The direction of the vield stress of the ith
step ts calculated trom the results of the previous step by

to . 1

oA+,

i

a= T (16)

[F8)

where 2 < 1 i1s a muluplier. The corresponding (2. n") are obtained by solving
eqn (3). The iteration continues until the average value of the inner product
et = 0P 40" in the yield zone is in the range of (—0.9999. —1.0). In the present
calculation the value of 4 1s taken to be 0.2 at the beginning of the iteration. which can be
adjusted during the iteration, depending on the speed of convergence.

Some previous investigations in order to simplity the analysis have assumed that the
direction of the vield stress is opposite to the direction of the applied shear stress (along
the x-axis in the configuration shown in Fig. 1), (Becker and Gross, 1989). In our calculation
when Poisson’s ratio is not zero it s observed that a given applied shear stress in the x-
direction will result in a crack face shding displacement in the p-direction. Thus, the
assumption that the yield stress is opposite to the direction of the applied shear will fail to
reproduce the correct crack growth since slip in a directions perpendicular to the applied
load is not correcetly taken into account. The present caleulation does assume that the
direction of the yield stress corresponds to the slip direction. Atthough the error for a single
calculation may not be too large. the accumulated error may be large when growth is
considered.

The criterion used here to determine the yield zone front is that ¢, the energy release
rate, should be equal to zero at the yield zone front and is cquivalent to requiring that the
stress singularity vamsh, For a given remote shear load, the perturbation starts from an
inttial circular yicld zone front R0y = C. Equation (3} is solved and a valuc of ¢ £ 0, iy
caleulated that varies along the front with the maximum and minimum values at 0 = 0 and
0 = 2 respectively. Equation (12) 15 used to determine the crack front displacement oa,
which will reduce the energy refease rate along the front. The change of energy refease rate
oG in eyn (12) s specified as — %G, To ensure accuracy the value of x is chosen such that
the maximum node displacement 1s less than 0.01, and the analysis 1s repeated for the
perturbed new front. The perturbation continues until ¢ along the yielding zone front s
approximately zero, considering the error associated with the solution of the original
boundary clement eqn (3). In the present computation G < 0.0002 is considered to be
sufficiently small to be tuken as zero. At this stage the actual yield zone front s considered
to huave been found.

The computation is carricd out for two different values of Poisson’s ratio s v = 0.2 and
v = 0.4 and for vurious shear load levels. The numerical results are presented in Figs 228,
In Figs 2 and 3, where because of the symmetry of the problem only the upper half of the
cruck geometry is shown, the thicker solid line represents the penny-shaped crack front
while the other curves give the yicld zone tronts corresponding to various shear loading
levels ranging from 0.257, to 0.85¢7, with increment 0.1t

Figures 4 and 3 give a closer look at the variation of the width of the yicld zone along
the crack front. The cight curves Irom lowest to the uppermost in cach figure represent the
yicld zone widths corresponding to a shear load of increasing magnitudes from 0.257, to
0.95t, with increment 0.1z, Itis clear from Figs 4 and 5 that the difference between the
widths of the vield zonc at 0 = 0 and € = =2 increases with the increase in the shear loading
level.

To measure the deviation of the shape of the yield zone front from a circle. the size of
the yield zone must be taken into account. Here the quantity

v = (width average width)/average width (17

is used to measure the comparative deviation of the vield zone front from a circle. When
the yield zone front is a circle, 3 equals zero.
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Fig. 2. Yielding zones corresponding to various load levels.
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Fig. 3. Yielding zones corresponding to various load levels.
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Fig. 4. Variation of the width of yiclding zone along the crack front.
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Fig. 3. Variaton of the width of yielding 7one atong the crack front.

The results are shown in Figs 6 and 7. Itis noted that in the foad range from 0.257, 1o
0.65t, the corresponding curves are nearly indistinguishable from cach other, which implics
that in this range of load level the yicld zone grows while its shape remans almost
unchanged. It is noted that the deviation ol the shape of the yield zone front from a circle
begins to decrease only afler the magnitude of the shear toad reaches a comparatively high
level.

Equation (15) (Becker and Gross, 1989) implies that when b, the radius of the yield
rone front, is much larger than «, a circular yield front meets the vanishing stress singularity
criterion. The results here (Figs 6 and 7) show that when the yield zone grows, it will
gradually approach a circle only in the sense of eqn (17). The absolute dilference between
the width at o point and the average width may actually increase as can be seen from Figs
4and 3.
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Fig. 6. Deviation of yielding zone [ront from a circle.
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Fig. 7. Deviation of yiclding zone front from a circle.

The value of the Poisson’s ratio of a material has a profound effect on the shape of
the yiceld zone as can be scen by comparing Figs 4 and 5, as well as Figs 6 and 7. [t is
observed that when v is increased from 0.2 to 0.4, the maximum deviation of the yield zone
width from the average value is nearly doubled.

Becker and Gross (1989) have shown that for cracks using & Dugdale-type approxi-
mation under uniform shear loading, for the conditions of eqn (15) the yiclding zone
front can be approximated by a circle and the following cquation, similar to cqn (14),
holds:

afb = (I —¢3frq)y' -, (18)
The numerical results here (Fig. 8) indicate that eqn (18) gives a good estimution of the

average width of the yield zone for different values of Poisson’s ratio, although the pointwise
estimate Is not accurate.

4
Eqn(18)
3 1 o v=02
s v=04

Average Width

0.0 0.2 0.4 0.6 0.8 1.0
t/1y

Fig. 8. Varnation of avérage width vs load level,
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APPENDIX
i the appendix formulae are given to caleulate the derivatives of the tintte part integral with respect 1o the

positions of the collocution point and the nodal points. By inspecting eyns (2} (4), it appears that the finite part
mtegral can be calcubuted as the sum of two integrals

"
f = F.p. ‘Rﬁu (AD)

and

I, = FEP.

(5
A, A2
I d (A=)

where the integration is over the triangulie clement of node v, vy and v with a collocation point at x,;
X=X, =X Ny = v = I order to derive a closed form expression of the finite tntegral, o local (o, &) coordinate
with the origin at v, and the g axis paraltel to v, is chosen. The local coordinate (1., 5,) of the 7th node s refated
to the global coordinate (v, ¢} through

no= Ay = deost+ (1, ~ v, sind), {A3}
L= =y =y s~ v eost, {A4)
where
V-
sintl = S (A5)

Vv - "l):'*'(.": "‘."l):~
cosfl = —. "i‘ \ lA.‘.,:t‘:',‘“.' T {A6)
V=X R (e -y

Lin and Keer (1987} have shown that
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where
Vo= lxo—xl Bo=n =510 =) Gi=3)

and

a=sin*0. b= —2costisin, ¢=vcos*t, forl,,.
a=cos ), h=2costsinfl, c¢=sin0 forl.,.

a=—cossinfl, h=cos’—sin"t), ¢c= —a. forl,,and/,,.

It is apparent that the calculation of the derivatives of /,, is straightforward 1f the derivatives of /,. /, and /,
are given. The derivatives of £ with respect to x,, vy, x; and x, have the form:
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In the above cquations

g 08 O, and n,
A0y Oy an oy,
are calculated from (A3) (A6).
o ¥4
,‘ and l,"
g, o,
are given in our previous paper (Li and Keer, 1992) whereas the rest of the necessary formulue are presented
below :
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